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1 Introduction

The study of supersymmetric string backgrounds reveals fascinating connections between

physical dualities and geometric transitions. Quite often new duality relations have in-

teresting geometric implications. It has been known for a long time that in presence of

isometries there exist discrete families of equivalent quantum field theories which can be

formulated on different backgrounds. An action of constant O(n, n,Z) matrices leaves in-

variant the system of the sigma model equations of motion and Bianchi identities, while at

the level of the target space it yields very different compactification manifolds (see [1] for

a review). This duality, which is a generalization of T-duality, is part of a larger web of

string dualities and has a special significance due to its perturbative nature.
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Recent studies of string compactifications have produced examples of pairs of back-

grounds which, on one side, display clear geometric relations, while, on the other, do not

seem to be connected by any simple direct duality. We have two examples in mind which

will play an important role in the discussion of this paper. One example concerns type

II compactifications on six-tori with fluxes. In type IIB such configurations involve O3

planes, and can be supersymmetric provided the fluxes are of a suitable type [2]. Moreover

the fluxes (as well as the warping) can be arranged in such a way as to respect some of the

isometries of the torus. A sequence of two dualities should still leave us within IIB theory,

and the outcome is a model with O5/D5 sources on a parallelizable nilmanifold with the

first Betti number being equal to 5 or 4 [3, 4]. There is a single solution involving a nilman-

ifold as internal space that does not seem to be accessible by any duality. It corresponds

to a type IIB solution on a manifold which can be seen as an iteration of circle fibrations

and has first Betti number b1(M) = 3 [5].

The second example is the Kähler/non-Kähler transition in the heterotic compactifica-

tions with non-trivial H-flux [6, 7]. The two respective compactification manifolds are both

locally given by a product of K3 surface and a two torus. While it is long believed that

such transitions should exist and can connect different Calabi-Yau manifolds, the relation

is established via a complicated and indirect chain of dualities involving a lift to M-theory

(see [8–16]).

These examples provide us with a motivation to look for a direct transformation to

relate these seemingly isolated solutions. Since locally the compactification manifolds are

of the form B × T
n, a very naive idea is to try to make a global action depend on the

coordinates on B in order to bring-in a connection. If this connection is non-trivial, it will

be responsible for the topology change via the transformation, and the tadpole cancellation

will fix the quantization condition for its curvature.

We find a special form of such a transformation that does indeed provide a direct and

simple connection when applied to the above mentioned examples. The tools for finding

the transformation are provided by the Generalized Complex Geometry [17, 18]. The latter

has already played an important role in the string compactifications since having a Gener-

alized Calabi-Yau structure is a necessary condition for preserving supersymmetry [19, 20].

Moreover, the so-called generalized tangent bundle [21], namely the extension of the tan-

gent bundle by the cotangent one which combines metric and B-field, conveniently encodes

all the global data needed to understand the action of the constant O(n, n,Z) transfor-

mations. The latter are part of a more general O(d, d) action1 which leaves the metric on

the generalized tangent bundle invariant. The transformation we design here is a special

case of an O(d, d) transformation which has been made coordinate dependent. Generically,

the transformation is a combination of a B-transform, a (scaling type) transformation of

(parts of) the metric and accordingly a shift in dilaton, a (pair of) U(1) rotation(s) and a

change in the connection. Since the latter provides the most easily distinguishable feature

of related manifolds, we shall use “twist transformation” for shorthand.

1Throughout the paper, we will use n for the number of isometries, and hence O(n, n, Z) for the T-duality

group, while d will be denoting the dimension of the internal manifold (mostly d = 6).

– 2 –



J
H
E
P
1
2
(
2
0
0
9
)
0
2
8

We apply the “twist transformation” to construct families of backgrounds for the

examples we mentioned above. More precisely, we will construct a family of O5/D5 config-

urations on twisted tori (iterations of torus fibrations over tori) from a T
6 compactification

with O3 planes, and heterotic torsional backgrounds starting from a K3 × T
2 compacti-

fication. These are special cases of (Kähler/non-Kähler) transitions between manifolds of

vanishing Chern class. We are considering here smooth fibrations. It would be of some

interest to extend this construction for degenerating fibres and understand if it can give

the general transitions between manifolds with a trivial canonical bundle.

As it is clear from these examples, the claim is that the twist transformation can relate

flux backgrounds to compactifications on Ricci flat backgrounds. This means in particular

that in type II backgrounds it does mix NSNS and RR fields. One way of getting a mixing of

these two sectors is by U-duality. The corresponding extensions of the Generalized Complex

Geometry is provided by the so-called Exceptional Generalized Geometry, which have been

argued by considering the sum of higher powers of the tangent and the cotangent bundles

needed to enforce the twisting with respect to RR fields [22–24]. Our transformation on

the contrary only uses the generalized tangent bundle.

This paper is organised as follows. In section 2, we define our O(6, 6) twist transfor-

mation, and detail its action both on the generalized vielbein and on the pure spinors.

Then, we consider the action of the twist specifically for the case of T
2 fibrations. In

section 3, we apply our transformation to type II compactifications. We first discuss the

general constraints that the transformation needs to satisfy in order for it to generate

new solutions. Then, we use the twist transformation to map T
6 backgrounds with O3

planes to a family of solutions on twisted tori with O5/D5 sources. In section 4, we turn

to heterotic string. After reviewing the conditions for having N = 1 solutions, we con-

struct the pure spinors equations reproducing these conditions. Then, we show how to

obtain the Kähler/non-Kähler transition via our transformation on the pure spinors. The

corresponding transformation on the generalized vielbein might need an extension of the

generalized tangent bundle to include the gauge bundle, a possibility further explored in

appendix B. Finally, in section 5, we explore the possibility for our transformation being

an automorphism of the Courant bracket.

2 Twists from O(d, d) transformations

In compactifications on manifolds with a n-dimensional torus action, O(n, n) transfor-

mations on the fibre have been successfully used to generate new solutions of string the-

ory/supergravity. The classical example is T-duality, which can give rise to new geometries

or to non-geometric backgrounds, depending on the form of the B-field of the original so-

lution. A more recent example of O(n, n) transformation is the so-called β-transform: a

combination of T-duality, rotation and another T-duality. Its most popular application

is to the AdS5 × S5 background, where it produces the supergravity dual of β-deformed

N = 4 Super Yang-Mills [25–27]. All these transformations act purely on the fibres of the

internal manifold Md. The purpose of this paper is to study the action of a different type

of transformation that mixes fibre and base directions.

– 3 –
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O(d, d) transformations appear naturally in Generalized (Complex) Geometry2 as the

stabilizer of the metric on the generalized tangent bundle, E. Given a d-dimensional

manifold M , the generalized tangent bundle E is a non-trivial fibration of T ∗M over TM

0 −→ T ∗M −→ E −→ TM −→ 0. (2.1)

The sections of E are called generalized vectors and they can be written locally as

X = v + ξ =

(

v

ξ

)

, (2.2)

where v ∈ TM and ξ ∈ T ∗M . The transition functions patching the generalized vectors

between two coordinate patches Uα and Uβ are
(

v

ξ

)

(α)

=

(

a 0

ωa a−T

)

(αβ)

(

v

ξ

)

(β)

. (2.3)

a(αβ) is an element of GL(d,R), and gives the usual patching of vectors and one-forms. To

simplify notations we set a−T = (a−1)T . The additional shift of the one-form gives the non

trivial fibration of T ∗M over TM . ω(αβ) is a two-form such that ω(αβ) = −dΛ(αβ), and it

defines a “connective structure” of a gerbe.

E is equipped with a natural metric, defined by the coupling of vectors and one-forms

η(X,X) = ivξ ⇔ XT ηX =
1

2

(

v ξ
)

(

0 1

1 0

) (

v

ξ

)

. (2.4)

The metric η is invariant under O(d, d) transformations, which act on the generalized

vectors in the fundamental representation

X ′ = OX =

(

a b

c d

)(

v

ξ

)

. (2.5)

However, from the patching condition (2.3), it follows that the structure group of E is

reduced to the subgroup of O(d, d) given by the semi-direct product Ggeom = GB ⋊ GL(d)

P = eB

(

a 0

0 a−T

)

=

(

a 0

Ba a−T

)

. (2.6)

GL(d) acts in the usual way on the fibres of TM and T ∗M

X 7→ X ′ =

(

a 0

0 a−T

)(

v

ξ

)

. (2.7)

The factor GB is called B-transform and it is generated by the action of a two-form B

X 7→ X ′ = eBX =

(

I 0

B I

)(

v

ξ

)

=

(

v

ξ − ivB

)

. (2.8)

2In appendix A, we give a brief summary of the Generalized Complex Geometry we will need in this

paper.
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The embedding of Ggeom ⊂ O(d, d) is fixed by the projection π : E → TM . It is the

subgroup which leaves the image of the related embedding T ∗M → E invariant.

In this paper we shall show how we can useGgeom to relate different string backgrounds.

We will be mostly concerned with the case where M is a torus fibration, T
n →֒ M

π−→ B,

and consider an element of Ggeom = GB ⋊ GL(d) of the type

O =

(

A 0

C D

)

=











AB 0 0 0

AC AF 0 0

CB CC DB DC

CC′ CF 0 DF











. (2.9)

In the second matrix, we split the base (B), fibre (F) and mixed elements. The O(6, 6)

constraints reduce in this case to

ATC + CTA = 0 ATD = I . (2.10)

This fixes the matrix D to be the inverse of A

D = (AT )−1 =

(

A−T
B −A−T

B AT
CA

−T
F

0 A−T
F

)

, (2.11)

and allows to parametrise C in terms of three unconstrained matrices C̃B, C̃F , C̃C ,

C =

(

A−T
B (C̃B −AT

CA
−T
F C̃C) −A−T

B (C̃T
C +AT

CA
−T
F C̃F )

A−T
F C̃C A−T

F C̃F

)

, (2.12)

with C̃B and C̃F anti-symmetric.

This transformation naturally combines the fibration structure of the internal manifold

with the standard symmetries of the generalized tangent bundle. A T
n invariant section of

TM (T ∗M) can be considered as an element of TB⊕ t (T ∗B⊕ t
∗), where t := Lie T

n ∼= R
n.

We can now think of the generalized tangent bundle E as a bundle over B × T
n , and

interpret our transformation (2.9) as a generalized B-transform. In a more conventional

language this would be a combination of an ordinary B-transform (2.8) and a twisting of

T
n over B.

We shall study when and how the transformation (2.9) maps one string background

to another. In general, two internal manifolds connected in this way will have different

topologies. Typically such topology changes are associated with large transformations,

while (2.9) is connected to the identity. The topological properties of related backgrounds

are determined by the global properties of the matrices C and AC .

2.1 Action on the generalized vielbeins

One reason to introduce the transformation (2.9) is to map spaces that are direct products

of two manifolds, for instance K3 × T
2, into spaces that are non-trivial fibrations. To see

how this is achieved we can look at the O(d, d) transformations of the generalized vielbeins.

– 5 –
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In Generalized Geometry the metric g and the B-field combine into a single object,

the generalized metric

H =

(

g −Bg−1B Bg−1

−g−1B g−1

)

, (2.13)

and, as in conventional geometry, it is possible to write it in terms of generalized vielbein

η = ET

(

0 I

I 0

)

E , H = ET

(

I 0

0 I

)

E . (2.14)

As already discussed, we will be interested in solutions where the manifold M is a

n-dimensional torus fibration (with coordinates ym) over a base B (with coordinates xµ)

ds2 = gµνdxµdxν + gmn(dym +Am
ρdx

ρ)(dyn +An
σdxσ) . (2.15)

The corresponding vielbeins are

eα = eα µdxµ (2.16)

ea = ea m(dym +Am
νdxν) = ea mΘm , (2.17)

where α and a are the local Lorentz indices on the base and the fibre, respectively, while

µ and m are the corresponding target-space indices. We take also a non trivial B-field of

the form

B = B(2) +B(1) +B(0)

=
1

2
Bµν dxµ ∧ dxν +Bµm dxµ ∧ Θm +

1

2
Bmn Θm ∧ Θn , (2.18)

where B(2) is the component entirely on the base, B(1) has one component on the base and

one on the fibre, and B(0) is on the fibre

B(2) =
1

2
(Bµν − 2Bm[µA

m
ν] +BmnA

m
µA

n
ν) dxµ ∧ dxν , (2.19)

B(1) = (Bµm −BmnA
n

µ) dxµ ∧ dym , (2.20)

B(0) =
1

2
Bmn dym ∧ dyn . (2.21)

The generalized vielbeins in (2.14) then take the form

EA
MdXM =

(

e 0

−êB ê

) (

dx

∂

)

=











eαµ 0 0 0

Aa
µ eam 0 0

−Bαµ −Bαm êα
µ Âα

m

−Baµ −Bam 0 êa
m





















dxµ

dym

∂µ

∂m











, (2.22)

where ê = (e−1)T . To simplify the notation we defined the connections Aa
ν = eamA

m
ν

and Âα
m = −êαµAµ

m. Similarly the components of the B-field are

Bαn = êα
µBµn Bαν = êα

µ(Bµν +BµmA
m

ν −Aµ
mBmν) , (2.23)

Ban = êα
mBmn Baν = êa

m(BmnA
n

ν +Bnν) . (2.24)

– 6 –
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Expression (2.13) is well known from the study of T-duality, where it parametrises the

moduli of d-dimensional toroidal compactifications, and indeed its transformation under

O(d, d) is the same as in standard T-duality

H 7→ H′ = OTHO . (2.25)

Then the O(d, d) transformations of the generalized vielbeins follow immediately

E 7→ E ′ = EO . (2.26)

Note that the choice of generalized vielbeins (2.22) is invariant under the Ggeom subgroup

of O(d, d) transformations.

As an example of the transformation (2.9), consider now a manifold which is a direct

product of a base and a “fibre” and with no B-field. The generalized vielbeins take the

simple form

E =











eB 0 0 0

0 eF 0 0

0 0 êB 0

0 0 0 êF











, (2.27)

where with obvious notation eB and eF denote the vielbeins on the base and the fibre.

After the transformation (2.9), it becomes

E ′ =











eBAB 0 0 0

eFAC eFAF 0 0

êBCB êBCC êBDB êBDC

êFCC′ êFCF 0 êFDF











. (2.28)

Comparing the previous expression with (2.22), it is easy to see that the new background

has a non-trivial B-field

B′ = −ATC = −
(

C̃B −C̃T
C

C̃C C̃F

)

, (2.29)

and a non-trivial fibration structure with connection A′ = A−1
F AC . The transformed metric

is then

ds2 = g′µνdxµdxν + g′mn(dym +A′m
ρdx

ρ)(dyn +A′n
σdxσ) , (2.30)

where g′µν = (AT
B gB AB)µν and g′mn = (AT

F gF AF )mn. Similarly, from the usual O(d, d)

transformation of the dilaton we get

eφ
′

= eφ
[

det(g′)

det(g)

]
1
4

. (2.31)

and from the explicit form of the metrics g and g′, (2.30), we have

eφ
′

= eφ|det(AB) det(AF )| 12 . (2.32)

The matrices AB, AF , AC , C̃B, C̃F , and C̃C are completely arbitrary, and hence the

transformation (2.9) allows to go from whatever metric, dilaton and B-field, to any other

metric, dilaton, connection, and B-field.

– 7 –
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2.2 Action of the transformation on pure spinors

We would like to use our twist transformation to generate new solutions. Since we are

dealing with supersymmetric compactifications, we can concentrate on solving the super-

symmetry conditions,3 since they are equivalent to the full system of equations of mo-

tion [28, 29]. The supersymmetry variations in type II supergravity can be expressed in

the language of Generalized Geometry as differential equations on a pair of compatible

O(6, 6) pure spinors [19, 20]. We will discuss the SUSY equations and their transforma-

tions under O(6, 6) in the next sections. Here we will focus on a basic ingredient, namely

the transformations of the pure spinors under O(d, d).

Spinors on E are Majorana-Weyl Spin(d, d) spinors. The spin bundle splits into two

chiralities, S(E)± and, in each representation, one can select a vacuum of Cliff(d, d). This

defines a pure spinor. There is an isomorphism between pure spinors and even/odd forms

on E

Ψ± ∈ L⊗ Λeven/oddT ∗M . (2.33)

L is a trivial line bundle which, as explained in [30], essentially reflects the presence of

the dilaton in the pure spinor: the sections of L are given by e−φ. Note that the isomor-

phism (2.33) is defined up to a multiplication by a complex number and, in general, defines

line bundles of pure spinors. On a symplectic manifold, this line bundle is generated by the

exponential of the symplectic form and can always be trivialized. In the case of a complex

manifold, L is the usual canonical line bundle. This means, in particular, that we can fix

the phase and have global pure spinors only on a manifold with a vanishing first Chern

class. In general this condition is not satisfied. For some of our applications the phase is

important and hence we shall keep it explicit. However, by a slight abuse of language, we

will refer to the lines of pure spinors as simply pure spinors.

Two pure spinors are said to be compatible when they have d/2 common annihilators.

Two compatible pure spinors define an U(d)×U(d) structure on E (the structure group is

reduced to SU(d) × SU(d) when the line bundles of the complex differential forms can be

trivialized). Any pure spinor can be represented as a wedge product of an exponentiated

complex two-form with a complex k-form. The degree k of the form is the type of the

pure spinor. The explicit expression for a pair of compatible pure spinors depends on the

geometry of the manifold M . For instance, if M has SU(3) structure, two compatible pure

spinors are of type 0 and type 3

Ψ+ = eiθ+e−φe−B e−iJ , (2.34)

Ψ− = −ieiθ−e−φe−BΩ , (2.35)

with J the real Kähler form and Ω the holomorphic three-form on M .

The O(d, d) action on a spinor on E is constructed in the usual way. We define the

O(d, d) generators in the spinorial representation as

σMN = [ΓM ,ΓN ] , (2.36)

3If there are non trivial fluxes, the Bianchi identities for the fluxes must also be imposed.

– 8 –
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with M,N d+ d indices. Then the group element in the spinorial representation is

O = e−
1
4
ΘMNσMN

, (2.37)

and it acts on the spinors by wedges and contractions: Γn = dxn∧ and Γm = ι∂m . The

matrix ΘMN is antisymmetric and reads

ΘMN =

(

am
n βmn

Bmn −a n
m

)

, (2.38)

where am
n, Bmn and βmn parametrise the generators of the GL(d) transformations, B-

transform and β-transform, respectively. In the next sections, we will need the explicit

action of GL(d) and B-transform, [18]. The GL(d) action is given by

Oa = e−
1
4
(am

n[Γm,Γn]−a n
m [Γm,Γn])

= e−
1
2
Tr(a)+am

ndxn∧ ι∂m

=
1√

detA
ea

m
ndxn∧ ι∂m . (2.39)

Similarly, for a B-transform, we obtain

OB = e−
1
2
BmnΓmn

= e−
1
2
Bmndxm∧dxn

. (2.40)

Given the action of the twist transformation on the generalized vectors, we want to

know what is the corresponding transformation on the pure spinors. To make the expo-

nentiation easier, we can decompose the matrix (2.9) as a product

O =

(

A 0

C A−T

)

=

(

I 0

X I

)(

A 0

0 A−T

)(

I 0

−Y I

)

(2.41)

with Y = ATXA − ATC. In the transformation of the generalized vielbein, we showed

that the B-field of the transformed background is B′ = ATBA− ATC. Therefore we can

interpret X as the B-field of the original solution and Y as the new one. Similarly, (2.41)

can be seen as a succession of a B-transform, a GL(d) rotation and another B-transform.

This leads to the following expression for the O(6, 6) action on the spinors

Of =
1√

detA
e−ymndxm∧dxn

ea
m

ndxn∧ ι∂m exmndxm∧dxn
. (2.42)

Since O(6, 6) acts on the generalized vielbein from the right and on pure spinors from the

left, we have exchanged the order of the transformations with respect to (2.41).

Finally, when applying the transformation (2.9) to the pure spinors we should allow

for an arbitrary phase. This reflects the freedom to change section of the line bundle L.

Hence, we should add to the action of (2.41) a U(1) shift by exp(iθ±c ):

O±
c = eiθ

±
c Of . (2.43)
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2.2.1 Twisting T
2

In this section we apply the twist transformation to our main examples, manifolds M which

are T
2 fibration over a four-dimensional base B

B × T
2 ⇒ T

2 →֒M
π−→ B . (2.44)

Depending on the example, we take B to be T
4, or K3. We will denote the holomorphic

coordinate on the fibre by z = θ1 + iθ2. Then the torus generators are defined as ∂z and

∂z̄ , and the connection one-forms by ΘI = dθI +AI , with Θ = Θ1 + iΘ2 and α = A1 + iA2.

The fibration will be in general non-trivial, and the curvature two-forms F I ∈ Ω2
Z
(B) are

given by dΘI = π∗F I .

Our starting point is a trivial T
2 fibration. For simplicity, we set the B-field to zero

and the dilaton to a constant. The pure spinors are as in (2.34) and (2.35), with the SU(3)

structure defined by

J = JB +
i

2
gzzdz ∧ dz̄ (2.45)

Ω =
√
g ωB ∧ dz , (2.46)

where g is the determinant of the metric on the torus fibre, JB and ωB the Kähler and

holomorphic two-forms on the base.

In the transformation (2.42) we set xmn = 0 since there is no initial B-field, and take

ymn an arbitrary antisymmetric matrix. This will act as a standard B-transform giving

the new B-field. Here we will concentrate on the GL(6) part. For simplicity, we take the

action on the base to be trivial

A =

(

14 0

AC AF

)

=

(

14 0

0 AF

)(

14 0

A′ 12

)

(2.47)

and

AF =

(

eλ1 0

0 eλ2

)

A′ = A−1
F AC =

(

A1
µ

A2
ν

)

. (2.48)

With this choice, the GL(6) factor in (2.42) becomes

Oa =
1√

detAF

eA
1 ι∂1

+A2 ι∂2 eλ1 dx1∧ ι∂1
+λ2dx2∧ ι∂2 , (2.49)

with AI = AI
µdxµ for I = 1, 2. In terms of the complex connection α, the off-diagonal

block becomes

AI ι∂I
= α ∧ i∂z + α ∧ i∂z

eA
I ι∂I = 1 + (α ∧ i∂z + α ∧ i∂z) + α ∧ α ∧ i∂z i∂z = 1 + o· , (2.50)

where o· sends a form to another form with same degree. The diagonal blocks give

eλIdxI∧ ι∂I =
∏

I=1,2

[

1 + (eλI − 1)dxI ∧ ι∂I

]

. (2.51)
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To derive (2.51) we used the fact the operators dxI ∧ ι∂I
commute for different values of

I, and (dxI ∧ ι∂I
)k = dxI ∧ ι∂I

.

The effect of (2.51) on Ω and J is to rescale the fibre components, while (2.50) intro-

duces the shift of the fibre direction by the connections α and α

J ′ = JB +
i

2
g′zz Θ ∧ Θ (2.52)

Ω′ =
√

g′ ωB ∧ Θ , (2.53)

where g′zz = e2λgzz and Θ = dz + α. In order not to change the complex structure, we

have to set λ1 = λ2 = λ.

Finally, from (2.50) and (2.51), it is straightforward to compute the new pure spinors

Ψ+ = eiθ+e−φ e−iJ −→ Ψ′
+ = eiθ+e−φ′

e−B′

e−iJ ′

,

Ψ− = −ieiθ−e−φ Ω −→ Ψ′
− = −ieiθ−e−φ′

e−B′

Ω′ . (2.54)

Here we took the normalized pure spinors and we did not transform the phases. The new

B-field is clearly B′ = ymndxm ∧ dxn and the dilaton is transformed by the trace part of

the GL(6) transformation

e−φ′

= (detAF )−1/2e−φ = e−λe−φ . (2.55)

2.2.2 SU(2) structures

In all our examples the base manifold B is a complex manifold and we can write the metric

on M as

ds2M = e2∆gij̄dz
idz̄j + gzz ΘΘ , (2.56)

where gij̄ and dzi (i = 1, 2) are the metric and complex coordinates on the base manifold

B, respectively. In the examples ∆ can be related to the dilaton φ. The associated Kähler

form and holomorphic three-form are given in terms of the base two-forms, JB and ωB, and

and the fibre one-form as in (2.52).

Note that JB and ωB in (2.52) define an SU(2) structure on the base manifold B. We

can use the pair of vectors ∂z and ∂z̄ to define a local SU(2) structure also on the whole

manifold M . This can be done in terms of a complex 1-form Z, a real 2-form j and a

complex (2,0)-form ω satisfying

ω ∧ j = ω ∧ ω = 0 ,

j2 =
1

2
ω ∧ ω̄ ,

Zxj = Zxω = 0 . (2.57)

The one-form Z is dual to the complexified vector field. To define the two-forms we shall

use an alternative parametrisation of the metric (2.56)

ds2M = g̃ij̄χ
iχ̄j̄ + ZZ , (2.58)
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where

g̃ij̄ = e2∆gij̄ + gzzAiAj̄ ,

χi = dzi + gzz g̃
ij̄Aj dz ,

Z =
√

gzz − g2
zz g̃

ij̄AiAj̄ dz . (2.59)

The SU(2) structure, or alternatively a pair of SU(3) structures, on M is given now by

J± =
i

2
g̃ij̄χ

i ∧ χ̄j ± i

2
Z ∧ Z ,

Ω =
√

det g̃ χ1 ∧ χ2 ∧ Z± , (2.60)

where Z+ = Z and Z− = Z. Using j, ω and Z, more general pure spinors of mixed type 0

- type 1 can be constructed. See for instance [26, 29, 31] for such solutions.

3 Type II transformations

One of our aims is to apply the O(6, 6) transformation discussed in the previous section

as a solution generating technique in Type II string theory. The idea would be to start

from a known solution and get a new one. Instead of studying when (2.9) preserves the

equations of motion, we will focus on the supersymmetry variations and derive the condi-

tions that supersymmetry imposes on the O(6, 6) transformation in order for the latter to

map solutions to new ones. We would like to stress that, in this paper, we do not solve

the general conditions the O(6, 6) transformation has to satisfy. We will leave it to future

work. Here we concentrate on an explicit application of our transformation to the context

of SU(3) structure compactifications on T
6 or six-dimensional twisted tori.

3.1 Generating solutions: constraints in type II and RR fields transformations

We will be interested in type II backgrounds corresponding to warp products of four-

dimensional Minkowski times a six-dimensional compact manifold. The ten-dimensional

metric in string frame is given by

ds2(10) = e2A(y) ηµνdx
µdxν + gmn(y)dymdyn , (3.1)

where η is the diagonal Minkowski metric.

The supersymmetry conditions for Type II compactifications have been given in the

language of Generalized Geometry in [19, 20] as a set of differential equations for a pair of

compatible pure spinors on E. In N = 1 compactifications the supersymmetry parameters

decompose as

ǫi = ζ+ ⊗ ηi
+ + ζ− ⊗ ηi

− i = 1, 2 , (3.2)

for type IIB, while for type IIA

ǫ1 = ζ+ ⊗ η1
+ + ζ− ⊗ η1

− ǫ2 = ζ+ ⊗ η2
− + ζ− ⊗ η2

+ . (3.3)
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In both cases ζ+ is a 4d Weyl spinor of positive chirality (ζ− = (ζ+)∗) and ηi
+ are two

positive chirality spinors in six dimensions (ηi
− = (ηi

+)∗). By tensoring the internal spinors

η1 and η2, we construct a pair of O(6, 6) spinors4

Φ± = η1
+ ⊗ η2 †

± . (3.5)

These are by construction pure and compatible, and define a SU(3)×SU(3) structure on E.

The explicit form of the pure spinors Φ± depends on the relation between the two

supersymmetry parameters η1 and η2. In this paper we will mostly consider the case of

manifold of SU(3) structure, where there is a single globally defined spinor η+ (with unitary

norm). Hence

η1
+ = |a| eiαη+

η2
+ = |b| eiβη+ . (3.6)

Here |a| and |b| are the norms of η1,2. Supersymmetry sets them equal and proportional

to the warp factor: |a| = |b| = eA/2. The corresponding pure spinors take the form (2.34)

and (2.35)

Ψ+ = 8 e−φe−B Φ+

||Φ+||
= eiθ+e−φe−B e−iJ , (3.7)

Ψ− = 8 e−φe−B Φ−

||Φ−||
= −ieiθ−e−φe−BΩ , (3.8)

where θ+ = α − β, θ− = α + β, and ||Φ±|| = |a|2. J is the real Kähler form and Ω the

holomorphic three-form on M . We choose to work with twisted normalised pure spinors

since they are those transforming nicely under O(6, 6).

The supersymmetry variations for the gravitinos and dilatinos are completely equiva-

lent to the following differential conditions on the pure spinors

d(e3AΨ1) = 0 ,

d(e2A Re Ψ2) = 0 ,

d(e4A Im Ψ2) = e4Ae−B ∗ λ(F ) . (3.9)

Thus in the Generalized Complex Geometry language a necessary condition for N = 1

supersymmetric backgrounds is to have a twisted Generalized Calabi-Yau manifold: one

pure spinor must be H-closed. In type IIA the closed pure spinor is the even one, Ψ1 = Ψ+,

4There is an isomorphism between O(6, 6) spinors and bispinors (tensor product of Cliff(d) spinors) given

by the Clifford map

C =
X

p

1

p!
Ci1...ipdxi1 ∧ . . . ∧ dxik ↔ Cαβ =

X

p

1

p!
Ci1...ipγi1...ik

αβ , (3.4)

where γik are 2d/2
× 2d/2 matrices.
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while in type IIB it is the odd one Ψ1 = Ψ−. The non integrability of the second spinor

is due to the RR fluxes on the internal manifold. In (3.9) we denote by F the sum of the

RR fluxes on the internal manifold

IIA : F = F0 + F2 + F4 + F6 , (3.10)

IIB : F = F1 + F3 + F5 . (3.11)

F is related to the total ten-dimensional RR field-strength F (10) by

F (10) = F + vol(4) ∧ λ(∗F ) , (3.12)

where vol(4) is the warped four-dimensional volume form with warp factor e2A. Finally, λ

acts on any p-form Ap as the complete reversal of its indices

λ(Ap) = (−1)
p(p−1)

2 Ap . (3.13)

Supersymmetry only sets necessary conditions for N = 1 vacua. In order to have a

full solution, the Bianchi identities for the fluxes must be imposed5

(d −H∧)F = δ(source) , dH = 0 . (3.14)

Here δ(source) is the charge density of the sources: these are space-filling D-branes or

orientifold planes (O-planes).

Consider now a solution of the supersymmetry equations and Bianchi identities, (3.9)

and (3.14), and apply to the associated pure spinors the transformation (2.43)

O±
c = eiθ

±
c Of ⇒ Ψ′

± = O±
c Ψ± . (3.15)

We want to determine what are the conditions on Oc in order to get a new solution. Since

the existence of a closed pure spinor is a necessary condition for preserving supersymmetry,

the idea is to consider transformations of the form (2.43) that preserve the closure of at least

one pure spinor and hence at least N = 1 supersymmetry. The action of the transformation

on the rest of the fields is then used to define the transformed RR fields.

The condition to get new solutions are easily determined by imposing that the trans-

formed pure spinors are again solutions of the SUSY equations

d(e3AΨ′
1) = 0

d(e2AReΨ′
2) = 0

d(e4AImΨ′
2) = R′ , (3.16)

where R′ is the new RR field (R = e4Ae−B∗λ(F )). Then expanding into real and imaginary

parts, we obtain

d(Of )Ψ1 = 0

cos θ+
c d(Of ) e2A Re Ψ2 − sin θ+

c d(e−2AOf ) e4A ImΨ2 = e−2A sin θ+
c Of R

sin θ+
c d(e2AOf ) e2A ReΨ2 + cos θ+

c d(Of ) e4A ImΨ2 = R′ − cos θ+
c Of R . (3.17)

5It has been proven [5, 29] that the equations of motion are implied by supersymmetry and the Bianchi

identities.
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The last equation defines the transformed RR field

R′ = cos(θ+
c )Of R+ sin(θ+

c )d(e2AOf ) e2A ReΨ2 + cos(θ+
c )d(Of ) e4A Im Ψ2 . (3.18)

The first two are the constraints the Oc transformation has to fulfill in order to map

solutions to new solutions of type II supergravity. As already mentioned at the beginning

of this section, we do not analyse in general the system of constraints above.

An interesting feature of this transformation is the possible mixing between the NSNS

and RR sectors. This is due to the complexification of the O(6, 6) transformation by the

U(1) action on the line of pure spinors. Note also that such a complexification is necessary

to relate different types of sources.

3.2 Mapping solutions in torus compactifications

A relatively simple and still non trivial class of flux compactifications are provided by T-

duals of toroidal compactifications [3, 4]. In all these cases the ten-dimensional metric is of

the form (3.1), where the six-dimensional manifold can be the straight T
6 or a twisted torus.

Such manifolds also provide explicit examples of Generalized Calabi-Yau manifolds [5, 32].

In this section we will use our twist transformation (2.9) to relate compactifications

on T
6 to nilmanifolds that are fibrations of T

2 over T
4

T
4 × T

2 ⇒ T
2 →֒M

π−→ T
4 . (3.19)

As in the previous section, we will denote the torus generators by ∂z and ∂z̄, and the

connection one-forms by ΘI = dθI +AI and the curvature two-forms by F I with I = 1, 2.

The twist transformations necessarily relate manifolds with different topological prop-

erties. This can be seen by computing the Betti numbers of the different manifolds. For

the direct product of T
2 with a generic base B, the Betti numbers are

b1 = b1(B) + 2 ,

b2 = b2(B) + 2b1(B) + 1 ,

b3 = b3(B) + 2b2(B) + b1(B) . (3.20)

Clearly the Betti numbers for generic M are smaller than for B×T
2 and will depend on the

topological properties of the curvature F . Indeed as dθI is mapped to ΘI = dθI +AI and

dΘI = π∗F I , the two one-forms dθI , which were non-trivial in cohomology, are replaced

by forms that are not closed. At the same time the two closed two-forms F I , while being

non-trivial in cohomology on B, are trivial in cohomology on M . When the base is T
4, we

find b1(M) = b1(T
4) = 4. There are only seven classes of nilmanifolds with b1 = 4. It is not

hard to check that three of them are actually affine T
2 fibrations over T

4 (circle fibrations

over five-manifolds which are in turn circle fibrations over T
4)

n 4.1 (0, 0, 0, 0, 12, 15+ 34) M = I6
n 4.2 (0, 0, 0, 0, 12, 15) M = T

2 × I4
n 4.3 (0, 0, 0, 0, 12, 14+ 25) M = S1 × I5
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where In+2 is a sequence of two circle fibrations over T
n. This leaves us with four topolog-

ically distinct cases of two commuting U(1) fibrations6 over T
4

n 4.5 (0, 0, 0, 0, 12, 34) M = N3 ×N3 b2(M) = 8 b3(M) = 10

n 4.6 (0, 0, 0, 0, 13, 14) M = S1 ×N5 b2(M) = 9 b3(M) = 12

n 4.4 (0, 0, 0, 0, 2 × 13, 14 + 23) M = N
(1)
6 b2(M) = 8 b3(M) = 10

n 4.7 (0, 0, 0, 0, 13 + 42, 14 + 23) M = N
(2)
6 b2(M) = 8 b3(M) = 10

where N3 is a circle fibration over T
2, N5 is a T

2 fibration over T
3 and N

(1)
6 and N

(2)
6 are

two distinct T
2 fibrations over T

4.

Type C solutions, i.e. solutions with a non-trivial RR F3 with O5/D5 sources, can

be obtained on some of these manifolds by two T-dualities along the fibre from a type B

solution on T
6. The latter has a non-trivial five-form which is related to the warp factor

and an imaginary anti-self dual complex three-form flux gsF3 = − ∗ H. According to

standard Buscher rules, the components of the B-field with one leg along the fibre give,

after T-duality, the non-trivial connections. Under T-duality the O3 planes are mapped to

O5 planes.

Here we shall show that such manifolds can also be related via our twist transforma-

tion (2.9) to T
6 with O3 planes, a non-trivial five-form flux F5 and a trivial NSNS flux. In

this background the five-form flux is related to the warp factor

gsF5 = e4A ∗ d(e−4A) , (3.21)

while the dilaton is constant eφ = gs. All other fluxes are zero. The complex structure is

chosen as

χ1 = e1 + ie2 ,

χ2 = e3 + ie4 ,

χ3 = e5 + ie6 , (3.22)

where χi are one-forms and the vielbein on the torus are ei = e−Adxi with i = 1, . . . , 6.

Then the SU(3) structure and the corresponding pure spinors are

Ω = χ1 ∧ χ2 ∧ χ3 Ψ− = − i

gs
Ω (3.23)

J =
i

2
χi ∧ χi Ψ+ =

i

gs
e−iJ . (3.24)

The O3 projection fixes one phase θ+ = π
2 , while we choose for the other θ− = 0.

The idea is now to apply the transformations (2.43) and (2.49) to the previous solution

and see under which conditions we can reproduce the nilmanifolds n 4.5 - n 4.7. We choose

the T
2 torus fibre in the directions x5 and x6. Since we are connecting solutions with zero

6Note that here we label the nilmanifolds as in [5], but for n 4.4, n 4.6 and n 4.7 we have used iso-

morphisms of the nilpotent algebras to cast the individual entries in a convenient form, yielding simple

solutions for the same choice of complex structure on the base T
4. The same isomorphism applied to n 4.5

gives the algebra (0,0,0,0, 2 × (14 - 13) + 23 - 24, 23 - 13 + 2 × (24 -14)).
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NSNS flux, we do not bother to consider the contribution of the B-transform. The new

pure spinors are given by (2.54)

Ψ′
− = −ieiθ−c e−φ′

Ω′

Ψ′
+ = ieiθ

+
c e−φ′

e−iJ ′

, (3.25)

where the SU(3) structure takes the form (2.52)

J ′ = JB +
i

2
g′zzΘ ∧ Θ (3.26)

Ω′ =
√

g′ ωB ∧ Θ , (3.27)

with JB = i
2(χ1 ∧ χ1̄ + χ2 ∧ χ2̄), ωB = χ1 ∧ χ2 and Θ = dz + α.

Note that in order to obtain a geometric background, we need to perform the twist

along isometries. As in standard T-duality, this implies a smearing in the fibre directions,

especially for the warp factor. Then we expect to have O5 planes in the directions 56.

To determine the connection, as well as the other fields in the solution, we require

that the transformed background satisfies the supersymmetry constraints (3.9) for O5

compactifications with type 3 - type 0 pure spinors [5]

eφ
′

= gse
2A′

d(eA
′

Ω′) = 0

d(J ′)2 = 0

d(e2A′

J ′) = gse
4A′ ∗ F ′

3

H = 0 . (3.28)

Also, the O5 projection sets θ+ = 0 and we choose again θ− = 0, hence θ−c = 0 and

θ+
c = −π/2.

It is straightforward to verify that from the equation for the real part of Ψ′
+, it follows

that indeed eφ
′

= gse
2A′

and

g′zz = e2A′ F ∧ JB = 0 ,

F ∧ JB = 0 .
(3.29)

Similarly, the imaginary part of Ψ′
+ can be used to define the RR three-form as in (3.28)

(see also (3.18)). Finally, the equation for Ψ′
− sets A′ = A and

F ∧ ωB = 0 . (3.30)

Using the form (3.29) for the new metric on the fibre and the fact that the warp factor

does not change, we can write the metric on M as

ds26 = e−2A
4
∑

i=1

(dxi)2 + e2A
∑

I=1,2

(dxI +AI)2 , (3.31)
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which is indeed what one expects for O5 compactifications. As a transformation on the

generalized vielbein, (2.9), the twist acts as

AB = I4 , AF = I2 × e2A′

, A z
C µ = e2A′

αµ , A z
C µ = e2A′

αµ , (3.32)

and we can check the dilaton is transformed as expected.

Let us go back to the form of the constraints on the curvature F . From (3.29)

and (3.30), we see that demanding that the twist preserves supersymmetry is equivalent to

the requirement that F does not have a purely anti-holomorphic part and its contraction

with the Kähler form on B vanishes

F = F 2,0 + F 1,1
− . (3.33)

Using the diagonal metric on T
4 associated to the Kähler form JB, it is convenient to define

an orthogonal set of two-forms

j1± = e1 ∧ e2 ± e3 ∧ e4 ,
j2± = e1 ∧ e3 ∓ e2 ∧ e4 ,
j3± = e1 ∧ e4 ± e2 ∧ e3 , (3.34)

such that ji± = ± ∗ ji± (for i = 1, 2, 3) and ji± ∧ jj± = ±1
2δ

ij vol(T4). Then JB = j1+ and

ωB = j2+ + ij3+. The decomposition (3.33) becomes

F = f+(j2+ + ij3+) + fi j
i
− (3.35)

for a set of complex f+, fi. It is not hard to verify now that f+ = 1, fi = 0 for n 4.7,

f+ = 1, fi = (0, 1, 0) for n 4.4, f+ = 1
2 , fi = (0, 1

2 ,
i
2) for n 4.6, and f+ = −1+3i

2 , fi =

(0, i−3
2 , 1−3i

2 ) for n 4.5. Hence the curvatures for these three cases satisfy the conditions

needed to preserve supersymmetry.

When F is purely imaginary (real) we get a special case of a single non-trivial circle

fibration. Indeed after setting to zero f+ and the real part of fi, the algebra n 4.6 becomes

(0,0,0,0,0,12× (14-23)), which is isomorphic to n 5.1. Similarly, either by setting to zero f+

and the imaginary part of fi in n 4.6 (modulo the factor 1
2), or by simply setting to zero

f+ in n 4.4, one gets a nilpotent algebra (0,0,0,0,13+24,0) which is again isomorphic to n

5.1. For 4.5 one of the two U(1)’s can also be chosen trivial; the non- trivial fibration will

be in a direction that is a linear combination of x5 and x6. We conclude by recalling again

that all type C solutions on each of these nilmanifolds can also be obtained by ordinary

T-duality from a type B solution with a specific choice of NSNS flux.

3.2.1 Iterating the twist

The list of IIB SU(3) structure solutions with O5/D5 sources on nilmanifolds includes

only one case which is not related by a sequence of T-dualities to flux compactifica-

tions on straight T
6 [5]. The existence of such isolated solution is somewhat puzzling,

and, as we shall see, it is related to the rest of nilmanifold compactifications by the

twist transformation.
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The manifolds n 4.3 and 4.6 have trivial S1 factors. These can be twisted as well,

moving us in the table of nilmanifolds into the domain of lower b1. In particular n 4.6 has

the form M = S1 × N5 where N5 is a T
2 fibration over T

3. The second cohomology of

N5 is non-trivial (b2(N5) = 6) and hence it can support non-trivial U(1) bundles. A priori

there can be up to six different ways of constructing a U(1) fibration and there are several

topologically distinct ways to produce a manifold with b1(M)=3 out of n 4.6. However we

will see that one of them is singled out by supersymmetry.

In the previous section it was shown that n 4.6 yields a type IIB solution with O5/D5

sources. We want to further twist the remaining U(1) bundle without changing the type

of sources. This requires taking a real twist of the S1 factor while B-transforming with a

closed B. From the n 4.6 algebra (0,0,0,0,13,14) it is not hard to see that the S1 corresponds

to the direction 2, and hence the twisting amounts to sending dẽ2 = 0 to dẽ2 = F where

F ∈ H2(N5). The algebra becomes (0,F ,0,0,13,14).7 The form of the F is again fixed by im-

posing that the supersymmetry equations (3.28) continue to hold. This yields the conditions

F ∧ (e3 + ie4) ∧ (e5 + ie6) = 0 ,

F ∧ (e1 ∧ e3 ∧ e4 + e1 ∧ e5 ∧ e6) = 0 , (3.36)

which are solved by F = ẽ3 ∧ ẽ5 + ẽ4 ∧ ẽ6, where we set ẽi = eAei for i = 1, . . . , 4 and

ẽi = e−Aei for i = 5, 6. The corresponding algebra is (0,35+46,0,0,13,14), which is indeed

isomorphic to n 3.14, (0,0,0,12,23,14 - 35). In [5] it was shown that n 3.14 corresponds to

the only solution involving nilmanifolds that was not obtained by T-duality from compact-

ifications on T
6 with fluxes. Our twist transformation does connect it to the rest of the

nilmanifold solutions family.

A typical feature of such non T-dual solutions is that they involve non-localised inter-

secting sources, in this case two O5 planes. It is easy to see that our twist leads to the

same result. Indeed, the Bianchi identity for the F3 flux

gsdF3 = 2i∂∂̄(e−2AJ) = δ(D5) − δ(O5) , (3.37)

with the Kähler form

J = e−2A(ẽ1 ∧ ẽ2 + ẽ3 ∧ ẽ4) + e2Aẽ5 ∧ ẽ6 , (3.38)

becomes

gsdF3 = 2[∇(e−2A) − e2A]ẽ1 ∧ ẽ2 ∧ ẽ3 ∧ ẽ4 + 2e−2A ẽ3 ∧ ẽ4 ∧ ẽ5 ∧ ẽ6

+d(e−2A)(ẽ2 ∧ ẽ4 ∧ ẽ6 + ẽ2 ∧ ẽ3 ∧ ẽ5) + d(e2A)(ẽ2 ∧ ẽ4 ∧ ẽ5 − ẽ2 ∧ ẽ3 ∧ ẽ6) .(3.39)

In order to be consistent with the calibration conditions for the sources, the last line

should vanish. Had we assumed that ∂5, ∂6 and ∂2 are all honest isometries, this would set

A =const., thus giving the unsurprising result that due to the intersection the sources are

7It is easy to check that F is a linear combination of e1
∧ e5, e1

∧ e6, e3
∧ e5, e3

∧ e4, e4
∧ e6 and

e3
∧ e6 + e4

∧ e5.
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smeared.8 There is however the possibility of keeping the x2 dependence in the warp factor

and still have a consistent (and partially localized) solution. This possibility assumes that

the last twist (in direction 2) did not really require an isometry but a circle action. This also

suggests a possible generalization of our procedure, but we shall not pursue this further.

4 Heterotic transformations

In this section we will apply the twist transformation to the heterotic string. Heterotic

string provides the first examples where compactifications with non trivial NSNS fluxes

have been studied in full detail [6, 7]. We shall consider here the twist transformation

on non-trivial flux backgrounds preserving at least N = 1 supersymmetry. The internal

manifold will always be locally a product of K3 and T
2. As discussed in [15, 16] a chain of

dualities can relate a solution involving K3 × T
2 to one where the internal space is given

by a non-trivial T
2 fibration over K3. It is natural to ask whether they could be related

by an O(6, 6) transformation of the type (2.9).

As we discussed in the section 2, the action of O(6, 6) is naturally implemented in the

Generalized Geometry framework. Such an approach is missing for the heterotic string,

basically because of the absence of a good twisting of the exterior derivative. It is nev-

ertheless possible to derive differential equations on pure spinors that capture completely

the information contained in the supersymmetry variations. This is all we need to act with

the O(6, 6) transformation (2.9). In this section we will derive the equations for the pure

spinors in the heterotic string and use them to build the O(6, 6) transformation connecting

the SU(3) structure solutions of [15].

4.1 N = 1 supersymmetry conditions

Before writing the pure spinor equations for N = 1 compactifications in the heterotic case,

we will briefly recall the conditions for N = 1 supersymmetry [6, 7].

The supersymmetry equation for the heterotic case can be written9

δψM =

(

DM − 1

4
HM

)

ǫ = 0 ,

δλ =

(

6∂φ− 1

2
6H
)

ǫ = 0 ,

δχ = 2 6 Fǫ = 0 , (4.1)

where ǫ is a positive chirality ten-dimensional spinor. F is the gauge field strength taken

to be hermitian,10 i.e. defined with the following covariant derivative on the gauge connec-

tion A
F = (d − iA∧)A . (4.2)

8Notice that while keeping the transformation real ensures that there is no change in the type of solution

and hence the sources (both the solution involving n 4.6 and the one on n 3.14 are of type C and have

O5/D5 sources), relative orientations of individual sources can change.
9These conventions are the same as in type II [19] with the RR fluxes set to zero. Note that these are

related to the conventions of [12] via H → −H .
10Following conventions of [12], we can develop the gauge quantities in terms of hermitian generators λa

in the vector representation of SO(32), and we use the normalisation condition tr(λaλb) = 2δab.
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The conditions that N = 1 supersymmetry imposes on compactifications to a four-

dimensional maximally symmetric space and non trivial NSNS flux were derived in [6]. If

we write the ten-dimensional string frame metric as in type II, (3.1),

ds2 = e2Ahµνdxµdxν + gmn(y)dymdyn , (4.3)

then the warp factor must be zero A = 0 and the four-dimensional metric Minkowski

hµν = ηµν . (4.4)

The internal manifold must be complex. The holomorphic three-form Ω satisfies

d(e−2φΩ) = 0 . (4.5)

In terms of the complex structure I defined by Ω, the Kähler form is Jmn = I p
m gpn and

satisfies

dJ = i(H1,2 −H2,1) ⇔ H = i(∂ − ∂)J , (4.6)

d(e−2φJ ∧ J) = 0 . (4.7)

The NSNS three-form has only components (2, 1) and (1, 2) with respect to the complex

structure I m
n

H = H2,1
0 +H1,2

0 + (H1,0 +H0,1) ∧ J , (4.8)

where the subindex 0 denotes the primitive part of H.

The gauge field strength F must satisfy the six-dimensional hermitian Yang-Mills

equation, i.e. must be of type (1, 1) and primitive

FxJ = 0 , (4.9)

Fij = Fīj̄ = 0 , (4.10)

where the second equation is given in holomorphic and anti-holomorphic indices.

These are the necessary conditions imposed by supersymmetry. The equations of

motion are satisfied provided the Bianchi identity holds:

H = dB − α′

4
tr

(

A ∧ dA− i
2

3
A ∧A∧A

)

+
α′

4
ω3(M) , (4.11)

where A is the gauge connection and ω3(M) the Lorentz Chern-Simons term [33]. It is

easier to check the anomaly cancellation condition

dH = 2i∂∂J =
α′

4
[tr(R ∧R) − tr(F ∧ F)] . (4.12)
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4.2 Pure spinor equations for heterotic compactifications

In the four plus six-dimensional splitting, the supersymmetry parameter ǫ corresponds, for

N = 1 supersymmetry, to a single six-dimensional chiral spinor η+

ǫ = ζ+ ⊗ η+ + ζ− ⊗ η− , (4.13)

where ζ+ is, as always, a four-dimensional Weyl spinor of positive chirality (ζ− = (ζ+)∗)

and η− = (η+)∗. The spinor η+ can be seen as defining an SU(3) structure on M (and

indeed the supersymmetry conditions can be rephrased in terms of conditions on the torsion

classes of an SU(3) structure manifold). Then a natural choice for the pure spinors is

Ψ+ = 8 e−φη+ ⊗ η†+ = e−φ e−iJ ,

Ψ− = 8 e−φη+ ⊗ η†− = −ie−φΩ . (4.14)

We have used the same letter as in (3.7) for the fermion bilinears (4.14), and we will still

call them pure spinors. However it should be kept in mind that they are not defined on

the generalized tangent bundle E but on T ⊕ T ∗ (e−B is missing). Using (4.1) and (4.13),

one can obtain the supersymmetry conditions on the pure spinors [5, 19]

d (Ψ±) = H • Ψ± , (4.15)

with

H • Ψ± =
1

4
Hmnp

(

dxm ∧ dxn ∧ ip − 1

3
iminip

)

Ψ± . (4.16)

Even though (4.15) captures all the information contained in supersymmetry varia-

tions, there are two problems with the action of the (d−H•) operator: it is not a differen-

tial, and it is hard to interpret its action on pure spinors as a twisting. There is a partial

resolution to the former problem. The Ψ− equation yields that H is indeed only of (1,2)

+ (2,1) type as given in (4.8), and

d (Ψ−) = iH0,1 ∧ Ψ− , (4.17)

from which we conclude that the internal manifold is complex. We can now use the inte-

grability of the complex structure (4.17) to rewrite (4.15) in terms of a differential

d (Ψ±) = ±
[

(H1,2 −H2,1) − i(H0,1 −H1,0)
]

∧ Ψ± = ±Ȟ ∧ Ψ± . (4.18)

The equation (4.18) for Ψ− agrees with (4.17). The decomposition of the Ψ+ equation

by the rank of the differential forms gives

• at degree 1

dφ = i(H0,1 −H1,0) , (4.19)

using which we recover the correct scaling on Ω (4.5).
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• at degree 3

dJ = i(H1,2 −H2,1) (4.20)

= i(H1,2
0 −H2,1

0 ) + dφ ∧ J . (4.21)

eq. (4.20) is clearly (4.6). Wedging (4.21) with J , we recover the balanced metric

condition (4.7). Finally recalling that ∗H = i(H2,1
0 −H1,2

0 −H1,0 ∧ J +H0,1 ∧ J) we

arrive at

∗H = −e2φd(e−2φJ) . (4.22)

• at degree 5, there is no new information.

We can now check that d ∓ Ȟ∧ is a differential. Since Ȟ is made of odd forms, it squares

to zero, and, due to (4.19) and (4.20), dȞ = 0. Hence (d ∓ Ȟ∧)2 = 0.

There stays however the problem that we cannot see the action of d∓Ȟ∧ as a result of

a twisting on the pure spinor. This will not prevent us for using the twist transformation to

relate different heterotic backgrounds. Essentially the idea is to consider a very special case

of the transformation (2.43) which does not contain a B-transform nor changes the phase

of the pure spinor (even if this amounts to stepping back somewhat from the Generalized

Geometry). In other words, we keep only the twist part of the general transformation (2.43)

and we demand that

(d ∓ Ȟ ′∧)(Oc Ψ±) = 0 . (4.23)

Two internal geometries M and M ′, defined by the pairs Ψ± and Ψ′
± = Oc Ψ±, are related

via twisting and satisfy the same type of Ȟ-twisted integrability conditions. The pair of

manifolds connected this way may in general be topologically and geometrically distinct.

Examples of such connections were constructed recently in [34]. Since there is no B-

transform involved in the construction, we are not dealing here with the diffeomorphisms

of the generalized tangent bundle. In this sense the discussion of the heterotic string differs

from the rest of the paper.

4.3 SU(3) structure solutions

We shall return to the class of fibered metrics discussed earlier. Consider a six-dimensional

internal space with a four-dimensional base B which is a conformal Calabi-Yau, and a T
2

fibre with holomorphic coordinate z = θ1 + iθ2. The metric and the SU(3) structure on

the internal space are in general given by

ds2 = e2φds2B + ΘΘ ,

J = e2φ JB +
i

2
Θ ∧ Θ

Ω = e2φ ωB ∧ Θ (4.24)

where Θ = dz + α and α is a (1, 0) connection one-form. JB is the CY Kähler form, ωB

is the CY holomorphic two-form, and the dilaton φ depends only on the base coordinates.

Furthermore, the curvature of the T
2 bundle F = dα has to be primitive with respect to JB

F ∧ JB = 0 , and F ∧ ωB = 0 . (4.25)
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A general solution to these constraints is of the form F = F+
(2,0) + F−

(1,1) ∈
H2,+(B) ⊕ H2,−(B). Then, one can satisfy the local supersymmetry equations, pro-

vided the base B is a four-dimensional hyper-Kähler surface. Here, the equations (4.5)

and (4.7) are automatically satisfied.

In [15], two N = 2 solutions with B = K3 and a non-zero H have been discussed. In

the first solution (which we will denote by Solution 1), the internal manifold is the direct

product K3×T
2 , i.e. α = 0. The gauge bundle is reduced to the sum of U(1) bundles, so F

is a sum of (1,1) primitive two-forms on the base. Furthermore, in this solution, B = 0, so

H receives only α′ contributions. The dilaton is non-trivial and the condition (4.6) relates

its derivatives to the gauge term.

The second solution (Solution 2) consists of a non-trivial T
2 fibration11 over K3, so

we have an α 6= 0. Moreover F = 0 and B = Re(α ∧ dz) 6= 0. The dilaton is non-trivial,

and has the same value as in the previous solution. The curvature of the connection α is

in general given by (3.33), and the solution would then be N = 1. If F has only a (1,1)

part as in [15], the solution is N = 2.12

These two solutions were proven to be related by a transition [8, 9, 12, 15, 16]. Both

solutions arise from M-theory compactifications on K3 × K3. A first step consists in

reducing to type IIB solutions on an orientifold (T4/Z2) × (T2/Z2). This is achieved by

taking the two K3 at the point in moduli space where they both are T
4/Z2 orbifold. Then

one of the two T
4/Z2 is considered as a fibration of T

2 over T
2/Z2, and the area of the

fibre is taken to zero. This yields a type IIB solution on (T4/Z2) × (T2/Z2) with four

D7 and one O7 at each of the four fixed points of T
2/Z2. Then two T-dualities along

T
2/Z2 give a dual type IIB solution on (T4/Z2) × (T2/Z2) with D9 and O9 at the dual

points. The same solution can also be interpreted as a type I solution on K3 × T
2 where

K3 is understood as T
4/Z2. Finally, doing an S-duality, one gets the heterotic SO(32)

solution on K3 × T
2 where K3 is again understood as T

4/Z2. The transition between the

two heterotic solutions then corresponds to an exchange of the two K3, and of its (1, 1)

two-forms, namely F and F . Note that M-theory on K3 × K3 can be dual to type IIA

on X3 × S1 where X3 is a CY three-fold. Then, the exchange of the two K3 corresponds

to mirror symmetry for X3 [35]. This exchange should not change the dilaton, which is

therefore the same in the two solutions.

We may connect these two solutions directly via (the special case of) our transforma-

tion (2.49). Since we have a background with only two commuting isometries, the twist

takes the form

Oc = 1 + o = 1 + α ∧ i∂z + α ∧ i∂z + α ∧ α ∧ i∂z i∂z . (4.26)

11The Betti numbers are b1(M) = 0, b2(M) = 20 and b3(M) = 42. Note that the Euler number χ(M)

vanishes, thus the manifold has a global SU(2) structure.
12The N = 2 supersymmetry is easy to see using the SU(2) structure. There exists a second pair of

compatible pure spinors which are of type 1-2, namely Ψ+ = e−φωB ∧ exp(Θ ∧ Θ/2) and Ψ− = e−φΘ ∧

exp(−iJB) (where we chose θ+ = π
2

, θ− = π). Differently from the type 0-3 pair, now it is Ψ− which is

not closed. The closure of Ψ+ imposes a stronger condition than (4.25) requiring that ωB ∧ F I = 0 (for

I = 1, 2) hence restricting F = F−

(1,1)
∈ H2,−(B).
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It has the effect of sending dz to Θ = dz+α in the forms defining the SU(3) structure (4.24),

and hence it relates the internal geometries of two solutions. Since the only change in the

metric between the two solutions is the presence of a non-trivial connection, we did not

assume any rescaling of the metric and thus we set AB = I4 and AF = I2 in (2.49). As a

consequence the dilaton does not change, in agreement with the analysis of [15].

Thus, starting with Solution 1 we read off the H from the closure of the transformed

pure spinor

H = i(∂ − ∂)J = i(∂ − ∂)(e2φ) ∧ JB − 1

2
(∂ − ∂) ((dz + α) ∧ (dz + α))

= i(∂ − ∂)(e2φ) ∧ JB − 1

2
(∂ − ∂) (α ∧ α) + d (Re(α ∧ dz)) , (4.27)

where we used the anti-holomorphicity of α. The last term is the only closed part of H,

and comparing to (4.11) we derive the B-field of Solution 2

B = Re(α ∧ dz) . (4.28)

Furthermore,

dH = −2i∂∂(e2φ) ∧ JB + F ∧ F . (4.29)

We would like to stress once more that the two solutions were related using the trans-

formation on the tensor products (4.14). Differently from the pure spinors in type II

solutions these do not contain an e−B factor and we have not performed any B-transform

in mapping the solutions; rather the B-field was read off as the closed part of H.

The global aspects of the solutions deserve some comments. Eq.(4.29) has the same

structure as the tadpole condition for the O5/D5 solutions in type IIB. Notice that, in

general, the first term in (4.29) yields δ-function contributions which are associated with

the positions of branes and planes, while the second term, after being completed to a top-

form by wedging with J , integrates over the six-manifold M to a positive number. The

presence of these defects is what makes T
2 fibrations over B = T

4 an admissible basis for the

solutions in IIB. In heterotic string in the absence of good candidates for negative tension

defects, we would like to assume a smooth dilaton; the second term is then cancelled by

the α′ contributions to (4.11). Crucially, when B = K3, terms like
∫

M ∂∂(e2φ) ∧ J2 vanish

for any smooth φ, while for B = T
4, φ may be non-single valued and the integral gives a

finite contribution to the tadpole. Indeed it is known that compactifications on smooth T
2

fibrations over T
4 are forbidden by the heterotic Bianchi identity [11, 12]. Starting from

a heterotic compactification on T
6 and applying the transformation (2.9) with non-single

valued coefficients (and hence the dilaton) may allow to circumvent the constraints imposed

by the Bianchi identity. However such backgrounds will be non-geometric and we will not

discuss them further in this paper.

We conclude this section by turning briefly to the transformation of the gauge field F .

The ordinary O(2, 18) transformation on the Narain lattice can exchange the antiself-dual

part of the curvature of the T
2 fibration with the U(1) factors in the gauge bundle. This

exchange is consistent both with supersymmetry and tadpole cancellation. As discussed

in [36], a better understanding of this exchange, as well as the transformation of the α′
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terms of H, is achieved considering the pullback of H to the total space of the gauge bundle

ρ: P →M ,

H = ρ∗H − α′

4
trA ∧F ,

whose contraction with the isometry vectors ∂z and ∂z gives a closed two-form (which

can be exchanged with the gauge U(1) curvature terms). For our purposes, in order to

capture the transformation of the α′ terms, one possibility is to extend the O(d, d) group

to O(d+ 16, d+ 16) transformations, and introduce new generalized vielbein incorporating

the gauge connection. We discuss this possibility in appendix B.

5 Courant bracket and a coordinate dependent O(n, n) transformation

In this section we shall provide, from a different point of view, some additional, a posteriori

justification for the transformations argued in this paper. Inspired by the twist, we shall

consider a theory with a T
n action and with an integrable generalized complex structure

and discuss the possibility of existence of coordinate dependent O(n, n) transformations,

that may preserve the integrability of the generalized complex structure.

It is well known that global O(n, n,Z) is a symmetry of equations of motion. Indeed, a

multiplication by constant O(n, n,Z) matrices exchanges sigma model equations of motion

with Bianchi identities while leaving the whole system invariant. This symmetry should be

an automorphism of the sigma model current algebra. Given a section (v, ρ) of TM⊕T ∗M

one can construct a current

Jǫ(v, ρ) =

∮

S1

dσ ǫ(σ)
[

ıvp+ ı∂σx ρ
]

(5.1)

where x are coordinates on M , p are momenta and ǫ(σ) is a smooth (test) function on the

circle (see [37] for details). The Poisson bracket of two such currents is

{Jǫ1(v, ρ), Jǫ2(w, λ)} = Jǫ1ǫ2

(

[(v, ρ), (w, λ)]H
)

− 1

2

∮

S1

dσ (ǫ1∂σǫ2 − ǫ2∂σǫ1)
[

ıvλ+ ıwρ
]

.

(5.2)

[·, ·]H is the twisted Courant bracket and it is defined by

[(v, ρ), (w, λ)]H = [v,w] +

{

Lvλ− Lwρ−
1

2
d(ıvλ− ıwρ) + ıvıwH

}

, (5.3)

where the first term is the Lie bracket of two vectors fields. The only automorphisms of

the Courant bracket are the diffeomorphisms and closed B transforms.

Taking M to be a principal torus bundle (Tn →֒M
π−→ B), we can study the reduction

of the twisted current algebra to the base B. We start by decomposing the sections of

TM ⊕ T ∗M into horizontal and vertical components. Any vector v and one-form ρ can be

written as

v = vB + f IKI

ρ = ρB + φIΘ
I ,
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where as before, we denote the connections on T
n as ΘI=1,...,n and their curvatures as F I

(π∗F I = dΘI). The torus generators are denoted KI (ιKΘ = 1). Demanding that both

LKvB = 0 and LKρB = 0, implies in particular f ∈ Ω0(B, t) and φ ∈ Ω0(B, t∗). In other

words, a T
n-invariant section of TM can be written as an element (vB, f) ∈ TB⊕ t, while a

T
n-invariant section of T ∗M can be written as (ρB, φ) ∈ T ∗B ⊕ t

∗. From now on, we shall

drop the subscript B on the vectors and one-forms; these will be taken to be horizontal.

Here we shall be interested only in configurations where the B-field has no components

with two legs on the fibre

B = B2 + (B1)I ∧ ΘI , H = π∗H3 + (π∗H2)IΘ
I . (5.4)

The reduction of the Courant bracket is then pretty simple and is given by

[(v, f ;ρ, φ), (w, g;λ, ω)](H3 ,F,H2) = [(v; ρ), (w;λ)]H3+
(

0,Lvg − Lwf ; 〈ω,df〉 − 〈φ,dg〉 − 1

2
d(〈ω, f〉 − 〈φ, g〉),Lvω −Lwφ

)

+ (5.5)
(

0, ıvıwF ; 〈ω, ıvF 〉 + 〈ıvH2, g〉 − 〈ıwH2, f〉 − 〈φ, ıwF 〉, ıvıwH2

)

,

where 〈·, ·〉 denotes the natural pairing t
∗ ⊗ t → R: 〈ω, f〉 = ωIf

I and so on. For details

and derivations see [38].

It is not hard to see that the one-form part of this expression is invariant under
(

f I

φI

)

→
(

AI
J BIJ

CIJ DI
J

)

·
(

fJ

φJ

)

and

(

F I

HI

)

→
(

AI
J BIJ

CIJ DI
J

)

·
(

F J

HJ

)

, (5.6)

provided A,B,C,D satisfy the relations needed to make the transformation an element of

O(n, n,Z). Indeed 〈ω, ıvF 〉 + 〈ıvH2, g〉 and 〈ıwH2, f〉 + 〈φ, ıwF 〉 are separately invariant,

while the third entry of the second line of (5.5) can be rewritten as 〈ω,df〉 + 〈dφ, g〉 −
1
2d(〈ω, f〉 + 〈φ, g〉) and its invariance is checked readily. The action of (5.6) on the second

and fourth entries of the quartet shows that a constant O(n, n,Z) transformation is indeed

an automorphism of the reduced current algebra (5.5).

In order to generalize this action to a local O(n, n) transformation it is useful to

examine (5.5) closer. The twisted algebra on global sections of TB ⊕ t ⊕ T ∗B ⊕ t
∗ can be

viewed as algebra on local sections of the generalized tangent bundle of M . Let us start

from the untwisted Courant bracket

[(v, f ;ρ, φ), (w, g;λ, ω)] = [(v; ρ), (w;λ)]+
(

0,Lvg − Lwf ; 〈ω,df〉 − 〈φ,dg〉 − 1

2
d(〈ω, f〉 − 〈φ, g〉),Lvω − Lwφ

)

. (5.7)

In addition to the diffeomorphisms, this bracket has two automorphisms:

1. Constant O(n, n) transformations on t ⊕ t
∗:

St(X) =











I 0 0 0

0 A 0 B

0 0 I 0

0 C 0 D





















v

f

ρ

φ











. (5.8)
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Indeed, it is not hard to check that

[St(X), St(Y )] = St([X,Y ]) . (5.9)

2. Generalized B-transforms

X 7→ eB̂X =
(

v, f + ıvU ; ρ+ ıvb
B + 〈b, f〉 + 〈φ,U〉, φ + ıvb

)T
(5.10)

with closed two-form bB and one-forms b and U .

More explicitly this can be seen as a section of the generalized tangent bundle

X =
(

ρα, φI |vα, f I
)











eαµ 0 0 0

U I
µ δI

J 0 0

(bB)αµ bαI êα
µ −Uα

J

bIµ 0 0 δI
J





















dxµ

dθJ

∂µ

∂J











= XT η E











dxµ

dθJ

∂µ

∂J











, (5.11)

where xµ and θI are the coordinates on the base manifold B and the torus fibre respectively.

Note that we consider here a special case of (2.22) where the metric on T
n is chosen to be

diagonal, and set the B-field fibre component to zero.

When bB, b and U are not flat, the Courant bracket of two such (local) sections of the

generalized tangent bundle will yield the twisted bracket [X,Y ](H3,F,H2) (5.5). Note that

the two-forms appearing in the bracket (5.5) are the field strengths of local quantities U I
µ

and bµI , F2 = dU and H2 = db.

We can now check that the transformation St(e
B̂X) corresponding to (5.6) is an au-

tomorphism of (5.5):

[St(e
B̂X), St(e

B̂Y )] = St(e
B̂ [X,Y ]) . (5.12)

Having described this way the constant O(n, n) symmetry of the current algebra, we are

ready to extend it to the action of (base) coordinate dependentO(n, n). Consider now X 7→
eB̂St(X) and let us take in general the O(n, n) matrix to be coordinate dependent. Starting

with a manifold M which is a principal torus bundle with a connection Θ = dθ+U (0) and

B-field b(0), let us choose the components of eB̂ such that U = AU (0) + Bb(0) + V and

b = CU (0) +Db(0) + c, or in other words

eB̂St(X) = Ste
B̂(0)

(X) +
(

0, ıvV ; 〈c,AT f +BTφ〉 + 〈CT f +DTφ, V 〉, ıvc
)

. (5.13)

The conditions for

[eB̂St(X), eB̂St(Y )] = eB̂St([X,Y ]) (5.14)

now are:

(gI ıv−f Iıw)dAJ
I +(ωIıv−φI ıw)dBJI +ıvıw

(

dV J +dAJ
IU

(0)I +dBJIb(0)I

)

= 0

(gI ıv−f Iıw)dCJI +(ωI ıv−φI ıw)dDJ
I +ıvıw

(

dcJ +dCJIU
(0)I +dDJ

Ib(0)I

)

= 0 (5.15)
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In other words, the coordinate dependence of the O(n, n) parameters is compensated by

the failure of the algebraic conditions U −AU (0) −Bb(0) = 0 and b− CU (0) −Db(0) = 0.

The one-form part yields:

(

g ω
)

OT η dO

(

f

φ

)

+
((

g ω
)

OT η ıv −
(

f φ
)

OT η ıw

)

(

dO

(

U (0)

b(0)

)

+

(

dV

dc

))

= 0

(5.16)

Hence combining the B̂ transform and theO(n, n) rotation of t⊕t
∗, there is a possibility

of gaining a new symmetry - a coordinate-dependent automorphism of the current algebra.

This is subject to solving (5.15) and (5.16). These give conditions on the curvatures dV and

dc in terms of the original geometric data. In order to be symmetry of the theory, (5.15)

and (5.16) should a priori be satisfied for arbitrary sections of TB ⊕ T ∗B and t ⊕ t
∗. We

believe that in general the constant O(n, n) and closed generalized B-transform, discussed

above, are the only solutions.

Notice however that in studying supersymmetric compactifications we are interested in

specific situations where the manifolds admits at least one integrable generalized complex

structure. In this case all we need to impose is the closure of the Courant bracket, and the

relative automorphisms, only on the eigenspaces of such generalized complex structure and

not on a generic section of E. Moreover, as discussed in section 3, even if weaker than the

closure of the Courant bracket, a sufficient condition for having an integrable Generalized

Complex Structure is a twisted closure of the corresponding pure spinor. The transforma-

tion of such a pure spinor under the coordinate-dependent O(n, n) transformation and the

conditions of its closure are easier to analyse and are of better practical use. The analysis

of section 3 and the examples of non-trivial supersymmetric solutions are special cases for

what appears to be a larger automorphism of the Courant bracket.

We conclude by remarking once more that the coordinate-dependent O(n, n) symmetry

is “bigger” than constant O(n, n,Z), as it might lead to a topology change in situations

where the constant O(n, n) does not. This is the case for our principal examples, namely

the duality transformation from M = B × T
n with B(0) = 0 to non-trivially fibered dual

geometry T
n →֒M ′ π−→ B and B̃ 6= 0 for the cases where the torus fibre has dimensions n =

2 and n = 1. Moreover our examples have been based on the simplest choices of solutions

(for example the operator O in (2.49) acts diagonally on the fibre). It should be interesting

to obtain the general conditions for the coordinate dependent twist-like automorphisms of

the current algebra and consider more intricate examples of dual backgrounds.
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A Generalized complex geometry

In this appendix, in order for the paper to be self-contained and to fix notations, we

will briefly recall the basic ideas of Generalized Complex Geometry. Generalized Complex

Geometry [17, 18] treats vectors and one-forms on the same footing. Given a d-dimensional

manifold M one defines the generalized tangent bundle E as an extension of T by T ∗

0 −→ T ∗M −→ E −→ TM −→ 0, (A.1)

whose sections are the generalized vectors. Locally they are given by the sum of a vector

and a one-form

X = v + ξ =

(

v

ξ

)

, (A.2)

where v ∈ TM and ξ ∈ T ∗M . They glue on the overlap of two coordinate patches Uα and

Uβ as

v(α) + ξ(α) = a(αβ)v(β) +
[

a−T
(αβ)ξ(β) − ia(αβ)v(β)

ω(αβ)

]

, (A.3)

where a(αβ) is an element of GL(d,R) and ω(αβ) is a two-form such that ω(αβ) = −dΛ(αβ),

where Λ(αβ) satisfies

Λ(αβ) + Λ(βγ) + Λ(γα) = g(αβγ)dg(αβγ) (A.4)

on Uα ∩ Uβ ∩ Uγ and gαβγ is a U(1) element. A one-form with these properties defines a

‘connective structure” of a gerbe. Note that shift by ω of the one-form is what make T ∗M

non trivially fibered over TM .

There is a natural metric on E, given by the natural pairing of vector and one-forms.

Locally it is given by

η(X,X) = ivξ , (A.5)

or in matrix notation

η =

(

0 1

1 0

)

. (A.6)

From the above expression it is easy to see that the stabilizer of η is O(d, d), which acts in

the fundamental representation on the generalized vectors

X ′ = OX =

(

a b

c d

)(

x

ξ

)

. (A.7)

However, as discussed in section 2, the structure group of E is reduced to the subgroup of

O(d, d) given by the semi-direct product Ggeom = GB ⋊ GL(d).

A.1 Generalized metrics and generalized vielbeins

In Generalized Geometry the metric g and the B-field combine into a single object, the

generalized metric

H =

(

g −Bg−1B Bg−1

−g−1B g−1

)

. (A.8)
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One way to justify this definition is to introduce a split of the bundle E into two orthogonal

d-dimensional sub-bundles E = C+⊕C− such that the metric η decomposes into a positive-

definite metric on C+ and a negative-definite metric on C−. The two sub-bundles are

defined as

C± = {X ∈ TM ⊕ T ∗M : X± = v + (B ± g)v} , (A.9)

and have a natural interpretation in string theory compactified in a six-dimensional mani-

fold as the right and left mover sectors. Then the generalized metric is defined by

H = η|C+
− η|C−

. (A.10)

The gluing conditions on the double overlaps for the metric and B-field are

g(α) = g(β), B(α) = B(β) − dΛ(αβ) . (A.11)

We can also introduce generalized vielbeins. They parametrise the coset O(d, d)/O(d)×
O(d), where the local O(d)×O(d) transformations play the same role as the local Lorentz

symmetry for ordinary vielbeins. There are many different conventions one could use to

define the generalized vielbeins, which are connected by local transformations. In this

paper we define the generalized vielbeins by the requirement that the metric η and the

generalized metric H can be written as

η = ET

(

0 I

I 0

)

E , H = ET

(

I 0

0 I

)

E . (A.12)

In this basis the generalized vielbein take the form

E =

(

e 0

−êTB êT

)

, (A.13)

which is invariant under the Ggeom subgroup of O(d, d) transformations.

Note that one can a priori choose a different set of vielbeins for the left and right mover

sectors, or equivalently for C±

g = eT±e± or gmn = ea±me
b
±nδab ,

g−1 = ê±ê
T
± or gmn = êm± aê

n
± bδ

ab ,
(A.14)

and e±ê± = ê±e± = I. Each of the two sets is acted upon by one of the local O(d) groups.

The expression for the generalized vielbein then becomes

E =
1

2

(

(e+ + e−) + (êT+ − êT−)B (êT+ − êT−)

(e+ − e−) − (êT+ + êT−)B (êT+ + êT−)

)

. (A.15)

Since the supergravity spinors transform under one or the other of the O(d) groups, it is

natural to use the local O(d) × O(d) to set e+ = e− so that the same spin-connections

appear, for instance, in the derivatives of the two gravitini. Explicitly, the O(d) × O(d)

action has the form

E 7→ KE , K =
1

2

(

O+ +O− O+ −O−

O+ −O− O+ +O−

)

, (A.16)

where O± are the O(d) transformation acting on the vielbeins e±. With this choice the

generalized vielbeins reduce to those in (A.13).
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A.2 O(d, d) spinors

Given the metric η, the Clifford algebra on E is Cliff(d, d)

{Γm,Γn} = {Γm,Γn} = 0 , {Γm,Γn} = δm
n . (A.17)

with m, n = 1 . . . d. The Spin(d, d) spinors are Majorana-Weyl. The positive and negative

chirality spin bundles, S±(E), are isomorphic to even and odd forms on E

Ψ± ∈ L⊗ Λeven/oddT ∗M
∣

∣

∣

Uα

. (A.18)

The isomorphism is determined by the trivial line bundle L, whose sections are given in

terms of the 10-dimensional dilaton, e−φ ∈ L. L is needed in order for the spinors to

transform correctly under diffeomorphisms and GL(d). It is easy to see that, locally, the

Clifford action of X ∈ E on the spinors can indeed be realized as an action on forms

X · Ψ := (vmΓm + ξmΓm)Ψ = ivΨ + ξ ∧ Ψ , (A.19)

Also, in going from one patch to another, the patching of E implies that

Ψ±
(α) = edΛ(αβ)Ψ±

(β) , (A.20)

where the exponentiated action is done by wedge product.

An O(d, d) spinor is said to be pure if it is annihilated by half of the gamma matrices (or

equivalently if its annihilator is a maximally isotropic subspace of E). Any pure spinor can

be represented as a wedge product of an exponentiated complex two-form with a complex

k-form. The degree k is called type of the pure spinor, and, when the latter is closed,

it serves as a convenient way of characterising the geometry. A pure spinor defines an

SU (d, d) structure on E. A further reduction of the structure group to SU(d) × SU(d) is

given by the existence of a pair of compatible pure spinors. Two pure spinors are said to

be compatible when they have d/2 common annihilators.

B Transforming the gauge bundle in heterotic compactifications

As discussed at the end of section 4, in order to map the gauge fields F of the two heterotic

solutions considered, we should extend our transformation on the generalized tangent bun-

dle (and generalized vielbeins) to the gauge bundle. T-duality and O(n, n) transformations

in heterotic string have been extended to the gauge bundle by considering O(n+16, n+16)

transformations. These were introduced in [39, 40]. We will follow the same procedure and

extend our O(d, d) transformation to O(d+ 16, d+ 16). Basically, we have to extend every

matrix considered so far by 16 complex components to get them on a dimension d + 16

bundle. So we define these extended quantities:

e =

(

es 0

egA eg

)

, g = eT e =

(

gs + ATggA ATgg

ggA gg

)

, B =

(

Bs −AT gg

ggA Bg

)

, (B.1)
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where the s index denotes the space-time objects (they are the same as in section 2.1),

and the g index denotes the gauge bundle quantities. A is the 16 × d matrix giving the

gauge connection. gg = eTg eg and Bg are the “gauge” metric and B-field, which are actually

constrained to take specific values, in order to make sense with the (root) lattice on which

we consider the fields

gg =
1

2
C, (Bg)ij =











−(gg)ij i < j

0 i = j

(gg)ij i > j

(B.2)

where C is the Cartan matrix (symmetric) of the group considered. As these matrices are

fixed, the only new freedom we introduce is the gauge connection given by A.

Then we define as before the generalized metric H and the generalized vielbein E ,

which are now extended to the gauge bundle:

Ẽ =

(

e 0

−ê B ê

)

H = ẼT Ẽ =

(

g −Bg−1B Bg−1

−g−1B g−1

)

, (B.3)

and are therefore 2(d + 16) × 2(d + 16) matrices. The O(d + 16, d + 16) transformations

act on them as did O(d, d) on the generalized vielbein and metric, (2.22) and (2.13). We

define the transformation of the dilaton as before (2.31); as we will see, we can use either

the previous d× d metric or the new (d+ 16) × (d+ 16) one.

As in [39, 40], we shall consider a subset of O(d+16, d+16), which does not change eg
and Bg. Indeed, eg and Bg are related to the Cartan matrix which should stay invariant.

Furthermore, the transformation should preserve the off-diagonal structure of B, i.e. the

off-diagonal block of the transformed B should be related in the same way to the new gauge

connection.

Following the logic of section 2, we consider the following O(d + 16, d + 16) transfor-

mations

O =

(

A 0

C A−T

)

, (B.4)

which satisfies the O(d+ 16, d+ 16) constraint ATC +CTA = 0d+16, and where, according

to (B.1), the matrices A and C can be decomposed into geometric and gauge blocks

A =

(

As 0

Ao Ag

)

, C =

(

Cs Co

C ′
o Cg

)

. (B.5)

The transformed vielbeins read

Ẽ ′ =

(

e′ 0

−ê′B′ ê′

)

, e′ = eA, B′ = ATBA−ATC . (B.6)

Imposing the invariance of the eg component of the vielbeins sets Ag = I16 and gives

the new gauge connection A′ = AAs + Ao. Similarly the invariance of Bg in the B-field

implies Cg = 016. Then we have to ask that the off-diagonal terms in B can be written

again in the form (B.1). This fixes Co and

Co = A−T
s AT

o (gg +Bg) C ′
o = (Bg − gg)Ao (B.7)
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Finally it is easy to see that the O(d + 16, d + 16) constraint ATC + CTA = 0d+16 is

equivalent to the antisymmetry of transformed B-field in (B.6) and gives the constraint

AT
s Cs + CT

s As = 2AT
o ggAo . (B.8)

B.1 A specific case: the Kähler-non Kähler transition of section 4

Let us now focus on the specific examples we considered in section 4. Solution 1 is a trivial

T
2 fibration, with no B-field, so we set Bs = 0, and has a non trivial gauge connection

A 6= 0. To recover Solution 2, we want to produce a connection in the metric, a non-zero

B-field, and no gauge connection, i.e. A′ = 0. From section 2, it is easy to write the metric

part of the transformation A

As =

(

I4 0

AC I2

)

. (B.9)

Since the diagonal elements are just identity matrices, this transformation does not modify

the metric and the dilaton. The vanishing of the gauge field A′ = 0 simply tells us to

choose Ao = −AAs. So the choice of connections fixes completely the A matrix.

We have now to check whether the constraint (B.8) can be satisfied. If we take the

gauge connection in Solution 1 to be only on the base, the off-diagonal block in the viel-

bein (B.1) takes the form egA =
(

AB 016×2

)

, then the constraint (B.8) becomes

AT
s Cs + CT

s As = 2AT ggA , (B.10)

and it is easy to verify that it solved by the following choice for the matrix Cs

Cs =

(

C̃B −AT
CCC + AT

BAB −(CT
C +AT

CCF )

CC CF

)

, (B.11)

where C̃B, CF and CC are free, and the two first are antisymmetric. Note the new B-field

is then given by

B′
s = −

(

C̃B −CT
C

CC CF

)

(B.12)

so we see once again that we can choose it to be whatever we want, and it fixes completely

the C matrix.

To summarise, inspired by the T-duality in heterotic strings we have made some steps

towards extending the O(d, d) generalized tangent bundle transformations to O(d+16, d+

16) hence covering the transformations of the gauge bundle. This allows, in particular, to

relate the two solutions discussed in section 4.
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